Поршни (ДВС) двигателя внутреннего сгорания

      Статья будет полезна для студентов заочной и очной форм обучения при написании дипломного проекта или курсовой работы, при исследовании эксплуатационных свойств транспортного средства за счет модернизации цилиндро-поршневой группы двигателя. 

       Поршни моноклинного исполнения

 6-1

     Поршни этого типа выполняются с использованием моноклинной оснастки, т.е. стержень, формирующий внутреннюю поверхность поршня, состоит из одной детали.
Моноклинные поршни, по сравнению с поршнями, произведенными на многоклинных оснастках, имеют простую, но выполненную с более высокой точностью внутреннюю поверхность, лучшую структуру и прочность материала. Моноклинные поршни применяются в основном в бензиновых двигателях и дизелях с частотой вращения не более 2500 об/мин в тех случаях, когда требования к качеству материала поршня предпочтительнее требований к его массе.

       Поршни трехклинного исполнения

6-2

     Поршни этого типа выполняются с использованием трехклинной оснастки, т.е. стержень, формирующий внутреннюю поверхность поршня, состоит из трех деталей. Такая конструкция стержня позволяет получить сложную внутреннюю поверхность поршня с выборками и ребрами над бобышками. Трехклинные поршни представляют собой промежуточный вариант между моноклинными и пятиклинными поршнями и являются компромиссом при соблюдении требований по массе и прочности. Применяются как в бензиновых двигателях, так и в дизелях.

       Поршни пятиклинного исполнения

6-3

     Поршни этого типа выполняются с использованием пятиклинной оснастки, т.е. стержень, формирующий внутреннюю поверхность поршня, состоит из пяти деталей. Такая конструкция стержня позволяет получить очень сложную внутреннюю поверхность поршня с выборками по всей внутренней полости. Пятиклинные поршни имеют меньшую массу по сравнению с моноклинными и трехклинными, но прочность их достаточно высока вследствие рационального распределения материала. Пятиклинные поршни являются одним из основных типов поршней, производимых в ОАО «АВТРАМАТ». Применяются как в бензиновых двигателях, так и в дизелях.

       Поршни с термовставкой

6-4

     Поршни этого типа выполняются со стальной кольцевидной термо вставкой, залитой ниже головки поршня, или с двумя вставками прямоугольной формы, заливаемыми в бобышки. Термо вставки предназначены для уменьшения теплового расширения поршня. При наличии современных материалов и технологий изготовления поршней данная конструкция является устаревшей.

      Поршни с нирезистовой вставкой

6-5

      Поршни этого типа выполняются с нирезистовой вставкой, которая повышает износостойкость канавки под первое компрессионное кольцо, испытывающей наибольшие нагрузки. Вставка сделана из специального легированного чугуна (нирезиста). Поршни с нирезистовой вставкой применяются в высокофорсированных дизелях.

       Поршни с маслоохлаждаемой полостью

6-6

     Поршни этого типа выполняются с маслоохлаждаемой полостью, служащей для снижения температуры головки поршня в зоне поршневых колец. Полость в отливке поршня формируется при литье солевым стержнем, который затем вымывается. Масло в полость попадает через специальные отверстия, находящиеся рядом с бобышками. Поршни с маслоохлаждаемой полостью применяются в высокофорсированных дизелях.

      Поршни с маслоохлаждаемой трубкой

6-7

     Поршни этого типа выполняются с залитой маслоохлаждаемой трубкой, которая позволяет снизить температуру головки поршня в зоне поршневых колец. Масло в трубку попадает через отверстия, находящиеся в бобышках. Поршни с маслоохлаждаемой трубкой применяются в дизелях высокой мощности, например, тепловозных.

Каталитические нейтрализаторы отработавших газов

       Современные каталитические нейтрализаторы – это трехкомпонентные каталитические нейтрализаторы. На нашем сайте Вы можете приобрести дипломный проект посвященный разработке каталитического нейтрализатора для трактора класса 3.

5-1

          Рисунок 1 – Каталитический нейтрализатор

      Трехкомпонентный каталитический нейтрализатор представляет собой корпус из нержавеющей стали, включенный в систему выпуска до глушителя. В корпусе располагается блок носителя с многочисленными продольными порами, покрытыми тончайшим слоем вещества катализатора, которое само не вступает в химические реакции, но одним своим присутствием ускоряет их течение.
         Чтобы увеличить площадь контакта каталитического слоя с выхлопными газами, на поверхность сот наносится подложка толщиной 20-60 микрон с развитым микрорельефом.
Как правило, носителем в нейтрализаторе служит спецкерамика - монолит со множеством продольных сот-ячеек, на которые нанесена специальная шероховатая подложка (рис.1). Это позволяет максимально увеличить эффективную площадь контакта каталитического покрытия с выхлопными газами - до величин около 20 тыс. м2. Причем вес благородных металлов, нанесенных на подложку на этой огромной площади, составляет всего 2-3 грамма. Керамика сделана достаточно огнеупорной – выдерживает температуру до 800-850 ºС. Но все равно при неисправности системы питания и длительной работе на переобогащенной рабочей смеси монолит может не выдержать и оплавиться - и тогда каталитический нейтрализатор выйдет из строя. Именно поэтому так проблематично выглядит использование каталитических нейтрализаторов с керамическим носителем на карбюраторных двигателях.

5-2

        Рисунок 2 – Соты нейтрализаторов Metalit

        Впрочем, все шире в качестве носителей каталитического слоя используются тончайшие металлические соты (рис.2.2). Это позволяет увеличить площадь рабочей поверхности, получить меньшее противодавление, ускорить разогрев каталитического нейтрализатора до рабочей температуры и, главное, расширить температурный диапазон до 1000-1050ºС. Соты нейтрализаторов Metalit, изображенного на ри¬сунке 2, сделаны из тонкостенного (толщиной всего 0,04 мм, а не 0,15 мм, как у керамики) листа хромо алюминиевой стали, для лучшей адгезии каталитического слоя легированной редкоземельным металлом иттрием. Такой нейтрализатор выдерживает пиковые температуры до 1300ºС. На первый взгляд может показаться, что установка катализатора решает все экологические проблемы. Однако, температура, при кото¬рой катализатор начинает действовать (температура активации), находится в пределах 250–350°С. Время же, необходимое для разогрева, может достигать нескольких минут и зависит от типа автомобиля, способа его эксплуатации и температуры воздуха. Холодный катализатор практически неэффективен – следовательно, необходимо уменьшить время достижения температуры активации.
      К 1995 году фирма ”Эмитек” разработала технологию подогрева катализатора мощным электрическим сопротивлением. Основанная на этом принципе модель катализатора ”6С” (или ”Эмикэт”) была установлена на ”БМВ-Альпина В12”. Подогреватель на металлической опоре крепится внутри катализатора (рис.4); его мощность – от 0,5 до 2, иногда 4 кВт, в зависимости от вели¬чины сопротивления (от 0,05 до 0,35 Ом). Для примера, элемент в 1,5 кВт разогревает катали¬затор до 400°С за 10 секунд.

5-3

         Рисунок 3 – Реакции в нейтрализаторе

5-4

       Рисунок 4 - Каталитический нейтрализатор с электроподогревом

     Компания ЭCИA пошла другим путем и предложила пусковой катализатор. Он размещается в специальном ответвлении выпускной системы, имеет меньшие, чем основной, размеры и, стало быть, прогревается быстрее, после чего приводит в рабочее состояние ”старшего брата”.
Чтобы снизить вредные выбросы при пуске холодного двигателя, иногда применяют также встроенный в катализатор адсорбер углеводородов. Как только рабочая температура достигнута, последние ”освобождаются” и окисляются самим катализатором. Среди подобных устройств можно назвать нейтрализатор ”Эдкэт” фирмы ”Делфай” или ”Пума” фирмы ”Корнинг”.
      В выпускной коллектор поместили специально разработанный кислородный датчик — так называемый лямбда-зонд (на Западе принято обозначать греческой буквой λ так называемый коэффициент избытка воздуха, то есть отношение стехиометрического состава смеси к текущему). Он вступает с раскаленными выхлопными газами в электрохимическую реакцию и выдает сигнал, уровень которого зависит от количества кислорода в выхлопе.

5-5

       Рисунок 5 - Современная компоновка системы нейтрализации с системой бортовой диагностики OBD-II (on-board diagnostics)

      На рис.6 изображен современный трехкомпонентный каталитический нейтрализатор. Второй кислородный датчик нужен для новейших систем бортовой диагностики OBD-II и отслеживает эффективность нейтрализации.
Впервые трехкомпонентные нейтрализаторы с обратной связью и кислородным датчиком появились на двигателях автомобилей Volvo в 1977 году. А сейчас ими оснащены все без исключения автомобили, которые продаются на рынках цивилизованных стран.

       Кислородные датчики.

5-6

        Рисунок 6 - Современный нейтрализатор

5-7

       Рисунок 7 - Кислородный датчик

      Датчик кислорода (рис.7) - он же лямбда-зонд - устанавливается в выхлопном коллекторе таким образом, чтобы выхлопные газы обтекали рабочую поверхность датчика. Он представляет собой гальванический источник тока, изменяю¬щий напряжение в зависимости от температуры и наличия кислорода выхлопной трубе. Материал его, как правило, керамический элемент на основе двуокиси циркония, покрытый платиной. Конструкция его предполагает, что одна часть соединяется с наружным воздухом, а другая - с выхлопными газами внутри трубы.

Нейтрализация отработавших газов в выпускной системе дизельных двигателей

      В дизельном двигателе топливо впрыскивается в цилиндр, уже наполненный раскаленным сжатым воздухом и на образование "правильной" горючей смеси просто не остается времени. Даже при тончайшем распылении (для чего и повышают давление) не все микрочастицы топлива успевают обзавестись нужным количеством молекул кислорода - вот вам и сажа. Снижение температуры в цилиндре по бензиновому рецепту только ухудшает картину. Вообще, основное противоречие дизеля, которое еще никто до конца не разрешил, - между снижением выбросов сажи и окислов азота: улучшая один параметр, неизбежно портим второй.
     Современные комплексные системы очистки отработавших газов для дизелей состоят из каталитических и жидкостных нейтрализаторов, а также сажевых фильтров.

       Сажевые фильтры (дипломный проект сажевого фильтра).

      Фирмы, пропагандирующие экономичные легковые дизели, ради экологии пускаются во все тяжкие. Например, предлагают устанавливать дополнительные бачки с дорогими реактивами, снижающими температурный порог разложения накопившейся в специальном нейтрализаторе сажи ("Пежо-607"). Выжечь, то есть окислить, накопившиеся в порах фильтра частицы можно лишь при достаточно высокой температуре, которой выхлопные газы правильно настроенного дизеля не достигают. Даже если приказать управляющему двигателем контроллеру пе-риодически увеличивать подачу топлива, все равно градусов не хватает. Решение видели в добавке к солярке мочевины (прямо на АЗС) либо незначительного количества специального реагента, хранящегося в отдельном бачке (5 литров хватает на 80 000 км пробега). Это снижало температуру начала реакции градусов на 100 и позволяло, обогатив смесь, очищать фильтр. Реализовать эти решения весьма сложно. Неудивительно, что бачки с реагентом прижились в основном на дорогих автомобилях, например, «Пежо-607».
      В фильтрах нового поколения общий принцип остался прежним: задержать и уничтожить. Но как добиться нужной для сгорания частиц сажи температуры? Во-первых, фильтр разместили сразу за выпускным коллектором. Во-вторых, через каждые 300-500 км пробега контроллер включает режим многофазного впрыска, увеличивая количество поступающего в цилиндр топлива. И, наконец, главное: поверхность фильтрующего элемента покрыта тонким слоем нового катализатора, который дополнительно повышает температуру выхлопных газов до необходимых 560-600°С. 

4-1

         Рисунок 1 - Фильтр «Опеля»: 1 - вход газов с частицами сажи; 2 - фильтрующий элемент; 3 - датчики давления; 4 - датчик температуры; 5 - выход. А - стадия накопления сажи; В - стадия ее выжигания

4-2

      Рисунок 2 - Совмещенный фильтр «Мерседес-Бенц»: 1 - лямбда-зонд; 2 - обычный окислительный нейтрализатор; 3 - фильтр частиц сажи; 4 - датчики давления; 5 - датчики температуры

     Фильтрующий элемент состоит, как правило, из керамической (кар-бид кремния) микропористой губки. Толщина стенок между ее каналами не превышает 0,4 мм, так что фильтрующая поверхность очень большая. Иногда эту «губку» делают из сверхтонкого стального волокна, также покрытого новым катализатором. Набивка настолько плотная, что задер-живает до 80% частиц размером 20-100 нм.
      Новые фильтры стали активно участвовать в управлении работой двигателя. Ведь режим обогащения включается по сигналу от датчиков давления, установленных на входе и выходе фильтра. Когда разность показаний становится значительной, компьютер воспринимает это как признак закупоренности «губки» сажей. А выжигание контролируют с помощью датчика температуры.
      Активные фильтры уже появились на дизельных моторах «мерседес-бенцев» С- и Е-классов (рис.2), с начала 2004 года прижились в «Опеле-Вектра» (рис.1) и «Сигнум», «Рено-Вель Са-тис» (рис.3).

4-3

        Рисунок 3 - Новый фильтр длиной 150-300 ми устанавливают рядом с выпускным коллектором (двигатель «Рено» 2,2 л)

Общее устройство и работа двигателя внутреннего сгорания

       Бензиновые и дизельные двигатели (дипломный проект).

         Двигатели внутреннего сгорания в зависимости от их конструктивных особенностей могут работать на бензине (инжекторные и карбюраторные двигатели), на соляре (дизели) и на газе. Бензиновые двигатели являются самыми распространенными в мировом легковом автомобилестроении.

3-1

       Они работают на жидком топливе (бензине) с принудительным зажиганием от свечей. Перед подачей в цилиндры двигателя бензин смешивается с воздухом в определенной пропорции с помощью специального устройства: карбюратора или инжектора, закрепляемых на двигателе снаружи. Поэтому бензиновые двигатели называют также двигателями с внешним смесеобразованием.
        Иногда вместо бензина в таких двигателях используют газ (пропан-бутан). Для перевода бензинового двигателя на газ используется специальное оборудование.

         Схема рабочего цикла с внешним смесеобразованием.

3-2

      На рис. 2.1 показана схема рабочего цикла с внешним смесеобразованием.
    Дизели - двигатели, работающие на соляре (дизельном топливе). В отличие от бензиновых двигателей в них применяется воспламенение от сжатия (в дизелях отсутствуют свечи зажигания). Смесеобразование (смешивание соляра с воздухом) в дизельных двигателях происходит непосредственно внутри цилиндров. Это двигатели с внутренним смесеобразованием. На рис. 2.2 показана схема рабочего цикла с внутренним смесеобразованием.
     Силовой (энергетической) установкой автомобилей является двигатель внутреннего сгорания. Задача двигателя - «выдать на-гора» механическую энергию в виде вращения выходящего из него вала. По аналогии электродвигатель преобразует электроэнергию во вращение вала.
    Топливо, находящееся в баке, потенциально несет тепловую энергию, которую двигатель превратит в механическую. Итак, двигатель - это преобразователь тепловой энергии топлива в механическую.

      Механизмы и системы двигателя.

    Двигатели внутреннего сгорания, используемые на легковых автомобилях, состоят из двух механизмов: кривошипно-шатунного и газораспределительного, а также следующих пяти систем:
- системы питания;
- системы зажигания;
- системы охлаждения;
- системы смазки;
- системы выпуска отработавших газов.

     Общее устройство и рабочий цикл одноцилиндрового бензинового двигателя.

     Рассмотрим принцип работы простейшего одноцилиндрового бензинового двигателя (рис. 2.3). Такой двигатель состоит из цилиндра, к которому прикручена съемная головка.

3-3

       Рис. 2.4. Поршень: 1 - маслосъемное кольцо; 2 - ком¬прессионные кольца; 3 - поршневой палец; 4 - стопорное кольцо; 5 - юбка поршня; 6 - втулка; 7 - болт; 8 - вкладыши; 9 - шатун; 10 - крышка шатуна 

3-4

      В цилиндре находится поршень. Он имеет форму цилиндрического стакана, состоящего из головки и юбки (рис. 2.4). На поршне есть канавки, в которых установлены поршневые кольца. Их задача - обеспечить герметичность пространства над поршнем, не дав возможности газам, образующимся при работе двигателя, прорваться под поршень, а также не допустить попадание масла, смазывающего внутреннюю поверхность цилиндра, в пространство над поршнем. Эти кольца играют роль уплотнителей, причем те из них, которые не пропускают газы, назвали компрессионными, а оберегающие от масла-маслосъемными.
     Цилиндр необходимо заправить топливной смесью бензина с воздухом, приготовленной карбюратором или инжектором, сжать ее поршнем и поджечь, а она, сгорая и расширяясь, заставит поршень двигаться вниз. Так тепловая энергия топлива превратится в механическую. Теперь необходимо преобразовать перемещение поршня во вращение вала. Для этого использовали следующее механическое приспособление: поршень с помощью пальца и шатуна шарнирно соединили с кривошипом коленчатого вала, который вращается на подшипниках, установленных в картере двигателя (рис. 2.3 и 2.4). В результате перемещение поршня в цилиндре сверху вниз и обратно легко преобразуется во вращение вала. Верхней мертвой точкой, сокращенно ВМТ, называют самое верхнее положение поршня в цилиндре (т.е. то место, где поршень перестает двигаться вверх и начинает движение вниз) (рис. 2.5). Самое нижнее положение поршня в цилиндре (т.е. то место, где поршень перестает двигаться вниз и начинает движение вверх) называют нижней мертвой точкой, сокращенно НМТ (см. рис. 2.5).

      Расстояние между крайними положениями поршня (от ВМТ до НМТ) называется ходом поршня (см. рис. 2.5). При перемещении поршня сверху вниз (от ВМТ до НМТ) объем над ним изменяется от минимального до максимального. Минимальный объем в цилиндре над поршнем при его положении в ВМТ называется камерой сгорания (см. рис. 2.5).
Объем, освобождаемый в цилиндре поршнем при его перемещении от ВМТ до НМТ, называют рабочим объемом цилиндра - Vp (см. рис. 2.5).
      Рабочий объем всех цилиндров двигателя, выраженный в литрах, называется литражом двигателя. Полным объемом цилиндра называется сумма его рабоче¬го объема и объема камеры сгорания. Этот объем заключен над поршнем при его положении в НМТ. Важной характеристикой двигателя является его степень сжатия. Она определяется как отношение полного объе¬ма цилиндра к объему камеры сгорания. Степень сжатия показывает, во сколько раз сжимается поступившая в цилиндр смесь при перемещении поршня снизу вверх (от НМТ к ВМТ). У бензиновых двигателей степень сжатия находится в пределах 6-14, у дизельных - 16-30. Степень сжатия во многом определяет мощность двигателя и его экономичность, существенно влияет на токсичность отработавших газов. Мощность двигателя измеряется в киловаттах либо в лошадиных силах (1 л . с . примерно равна 0,735 кВт). Работа двигателя внутреннего сгорания основана на использовании силы давления газов, образующихся при сгорании в цилиндре смеси топлива и воздуха. Как уже говорилось, в бензиновых и газовых двигателях смесь воспламеняется от свечи зажигания (см. рис. 2.3), в дизелях -от сжатия.
     Совокупность последовательных процессов, периодически повторяющихся в каждом цилиндре двигателя и обеспечивающих его непрерывную работу, называется рабочим циклом.
       Рабочий цикл четырехтактного двигателя состоит из четырех тактов, каждый из которых происходит за один ход поршня или за пол-оборота коленчатого вала. Полный рабочий цикл осуществляется за два оборота коленчатого вала.
      При работе одноцилиндрового двигателя его коленчатый вал вращается неравномерно, он резко ускоряется в момент сгорания горючей смеси, а все остальное время замедляется. Для повышения равномерности вращения на валу коленчатого вала, выходящего наружу из корпуса двигателя, закрепляют массивный диск (маховик) - рис. 2.6. Когда двигатель работает, вал с маховиком вращаются.Теперь поговорим немного подробнее о работе такого двигателя.
      Итак, первая задача - поместить внутрь цилиндра (в пространство над поршнем) топливовоздушную смесь, которую, как вы помните, приготовил карбюратор или инжектор. Это действие называют тактом впуска (первый такт).

        Принцип работы инжекторного двигателя.

3-5

    На рис. 2.7-2.10 показан принцип работы инжекторного двигателя. Заполнение цилиндра двигателя топливовоздушной смесью очень похоже на заполнение шприца лекарством (см. рис. 2.7): поршень из верхнего положения движется в нижнее. Но в шприце лекарство набирается, а затем выпускается через один и тот же канал (иглу). В двигателе же горючая смесь впускается через один канал, а продукты ее сгорания - через другой, т.е. к цилиндру двигателя подведены сразу два канала: впускной и выпускной. Непосредственно перед входом в цилиндр в этих каналах установлены клапаны. Их принцип действия очень прост: представьте себе гвоздь с большой круглой шляпкой, перевернутый «вверх ногами» (шляпкой вниз). Эта круглая шляпка закрывает вход из канала в цилиндр.
       При этом она прижимается к кромке канала мощной пружиной и как пробкой закупоривает его (см. рис. 2.15). Если нажать на клапан (тот самый «гвоздь»), преодолев сопротивление пружины, то вход в цилиндр из канала будет открыт (см. рис. 2.16). Теперь, познакомившись с принципом работы клапанов, вернемся к первому такту работы двигателя.

        Первый такт - такт ВПУСКА.
       Первый такт - впуск или, как иногда говорят, всасывание горючей смеси (см. рис. 2.7). Во время этого такта поршень перемещается из верхней мертвой точки в нижнюю. Впускной клапан при этом открыт, а выпускной надежно закрыт. Через впускной клапан цилиндр заполняется горючей смесью. Все это продолжается до того момента, пока поршень не окажется в нижней мертвой точке, т.е. его дальнейшее движение вниз окажется невозможным. Мы уже знаем, что перемещение поршня в цилиндре влечет за собой перемещение кривошипа, а следовательно, вращение коленчатого вала и наоборот. За первый такт работы двигателя (при перемещении поршня из ВМТ в НМТ) он повернется на пол-оборота.
       Второй такт - такт СЖАТИЯ.
      До сих пор топливовоздушную смесь, приготовленную инжектором или карбюратором, мы называли горючей. А вот теперь (после того как она попала в цилиндр, смешалась с остатками отработавших газов и за ней закрылся впускной клапан) будем называть ее рабочей. Итак, наступил момент, когда рабочая смесь заполнила цилиндр и пути ее отхода оказались отрезанными, поскольку впускной и выпускной клапаны надежно закрыты. Теперь поршень, начав движение снизу вверх (от нижней мертвой точки к верхней), попытается прижать рабочую смесь к головке цилиндра (см. рис. 2.8). Однако «стереть в порошок» эту смесь ему не удастся. Вы же помните, что преступить черту верхней мертвой точки поршень не в силах. А внутреннее пространство цилиндра проектируют так (и соответственно располагают коленчатый вал и подбирают размеры кривошипа), чтобы над поршнем, «застывшим» в верхней мертвой точке, всегда оставалось пусть и не очень большое, но свободное пространство. Напомним, что это пространство называют камерой сгорания.
        К концу такта сжатия давление в цилиндре возрастает до 0,8-1,2 МПа, а температура достигает 450-500 °С. Для того чтобы получить максимальную отдачу, хотелось бы сжать рабочую смесь как можно сильнее. Представьте себе, что вы пальцем закрыли выходное отверстие обыкновенного велосипедного насоса и сжимаете воздух. Чем сильнее сожмете, тем с большей силой «выстрелит» вверх рукоятка насоса, связанная с поршнем. Однако степень сжатия рабочей смеси во время такта сжатия ограничивается свойствами применяемого бензина, в первую очередь его антидетонационной стойкостью, характеризуемой октановым числом (у бензинов оно изменяется от 66 до 98). Чем выше октановое число, тем больше антидетонационная стойкость топлива. При чрезмерно высокой степени сжатия или низкой антидетонационной стойкости бензина может происходить детонационное (от сжатия) воспламенение смеси и нарушаться нормальная работа двигателя.

3-6

       Третий такт - РАБОЧИЙ ХОД.
       Вот теперь мы подошли к самому главному моменту превращению тепловой энергии в механическую. В начале третьего такта, даже с некоторым опережением (на самом деле в конце такта сжатия), горючая смесь воспламеняется с помощью электрической искры свечи зажигания (см. рис. 2.9).
       Давление от расширяющихся газов передается на поршень, и он начинает движение вниз (от ВМТ к НМТ). При этом оба клапана (впускной и выпускной) закрыты. Смесь сгорает с выделением большого количества тепла. Из-за этого давление в цилиндре резко возрастает и поршень с большой силой перемещается вниз, приводя во вращение через шатун коленчатый вал. В момент сгорания температура в цилиндре повышается до 1800-2000 °С, а давление - до 2,5-3,0 МПа. Обратите внимание, что только из-за третьего такта и создавался двигатель, хотя без остальных тактов он бы не состоялся. Поэтому все такты, кроме такта рабочего хода, иногда называют вспомогательными. А нам еще предстоит познакомиться с последним из вспомогательных тактов.
        Четвертый такт - такт ВЫПУСКА.
       В течение этого такта впускной клапан закрыт, а выпускной открыт. Поршень, перемещаясь снизу вверх (от НМТ к ВМТ), выталкивает оставшиеся в цилиндре после сгорания и расширения отработавшие газы через открытый выпускной клапан в выпускной канал (трубопровод) и далее через систему выпуска отработавших газов, наиболее известным представителем которой является глушитель, в атмосферу (см. рис. 2.10). Все четыре такта периодически повторяются в рассмотренной последовательности в цилиндре двигателя, обеспечивают его непрерывную работу и называются рабочим циклом.
      Рабочий цикл дизельного двигателя имеет некоторые отличия (см. рис. 2.2). При такте впуска по впускному трубопроводу в цилиндр поступает не горючая смесь, а чистый воздух. Во время такта сжатия он сжимается и нагревается. В конце этого такта, когда поршень, двигаясь вверх, подходит к ВМТ, в цилиндр через специальное устройство - форсунку, ввернутую в верхнюю часть головки цилиндра, под большим давлением впрыскивается мелкораспыленное дизельное топливо. Соприкасаясь с раскаленным воздухом, частицы топлива быстро сгорают. При этом выделяется большое количество тепла, в результате чего температура в цилиндре повышается до 1700-2000 °С, а давление - до 7-8 МПа. Под действием давления газов поршень перемещается вниз - происходит рабочий ход. Такт выпуска у дизельного двигателя аналогичен одноименному такту бензинового двигателя. Как мы уже сказали, лишь во время третьего такта (рабочий ход) совершается полезная механическая работа. Остальные три такта - вспомогательные. Они совершаются за счет кинетической энергии тщательно сбалансированного массивного чугунного диска, закрепленного на валу двигателя. Этот диск называют маховиком (см. рис. 2.6 и 2.11). Кроме обеспечения равномерного вращения коленчатого вала, маховик также способствует преодолению сопротивления сжатия в цилиндрах двигателя при его пуске, а также позволяет ему преодолевать кратковременные перегрузки, например, при трогании автомобиля с места. На ободе маховика закреплен зубчатый венец для пуска двигателя стартером. Во время третьего такта (рабочего хода) поршень через шатун, кривошип и коленчатый вал двигателя передает запас инерции маховику.
      Накопленная таким образом инерция помогает маховику осуществлять вспомогательные такты рабочего цикла двигателя. В результате при тактах впуска, сжатия и выпуска поршень перемещается в цилиндре именно за счет энергии, отдаваемой маховиком. В многоцилиндровом двигателе порядок работы цилиндров устанавливается так, что рабочий ход, совершаемый в данный момент хотя бы в одном цилиндре, помогает проведению вспомогательных тактов плюс оказывает помощь энергетическое донорство маховика.

Конструкции камер сгорания

      Конструкции камер сгорания.

2

I. Сферическая
II. Цилиндрическая
III. Полусферическая
IV. Трапецеидальная
V. Овальная
VI. Шаровая

Классификация двигателя. Рабочие циклы автотракторных циклов двигателей

     Приведенный классификационный анализ двигателей, а также их рабочих циклов, будет весьма полезен при написании дипломного проекта.

1. ДВС – двигатель внешнего сгорания (паровой)
2. ДВС – двигатель внутреннего сгорания

    1) ДВС (внутреннего сгорания)
1) Расположения
1. Рядный
2. V- образный
3. Оппозитный
4. Звездообразный
5. П- образный
6. Х- образный

1-1

    2) Количество цилиндров: 1; 2; 4; 6; 8; 10; 12 …
    3) Количество оборотов
    4) Тип системы охлаждения
    5) По виду использования топлив
    6) По тактности
    7) По способу смесеобразования
    8) По способу воспламенения
    9) По способу преобразования тепловой энергии

       Рабочий цикл 4-х тактного двигателя

1-2

      А) Такт впуска Б) Такт сжатия С) Такт воспламенения D) Такт выхлопа

      Работа многоцилиндрового двигателя 1800
4-х цилиндровые – 1-3-4-2 (может быть 1-2-4-3)
6-и и 8-и – цилиндровые - у них колено у коленчатых валов развернуты под углом 900.
ЗИЛ 130 – 1-5-4-2-6-3-7-8 у 6-и цилиндров 1-5-4-2-6-3
Порядковый номер цилиндров считается от радиатора

1-3

     Двенадцати цилиндровый ДВС ЯМЗ-240Б развал = 750, порядок работы цилиндров 1-12-5-8-3-10-6-7-2-11-4-9

     Рабочий цикл 2-х тактного двигателя

1-4

1. Продувочное окно, 2. Выхлопное окно, 3. Свеча, 4. Заслонка карбюратора, 5. Всасывающее окно, 6. Картер, 7. Воздушный жиклёр, 8. – 9. Пластины компенсатора.

   Рассмотрим работу одноцилиндрового двигателя с внешнем смесеобразованием, у которого кривошипная камера выполняет роль предварительного компрессора. Такие ДВС называют двухтактными с кривошипно – шатунной продувкой. В нем происходит (одновременно) два такта: один над поршнем, второй под поршнем.